

Marine Ecosystems

Acoustics Program

Bob Dziak

Program Pls: Joseph Haxel, Holger Klinck, Haru Matsumoto, David Mellinger

Mission:

Use underwater sound to assess the health of marine ecosystems

Ambient Ocean Sound:

Evaluate the impacts of sound from human activities, and natural processes, on the marine environment

Bioacoustics:

Assess changes in abundance and distribution of marine mammals due to man-made noise and climate

Geophysics:

Quantify volcanic processes and develop methods to estimate CO₂ gas release from submarine volcanoes

New Technologies:

Develop innovative ocean sound sensing technologies

Relevance

NOAA's Missions:

- > Assessing health and productivity of marine ecosystems (Healthy Ocean Goal)
- > Advance understanding of the oceans, manage marine ecosystems

OAR/PMEL Science Goals and Objectives:

- Develop Next Generation tools and technology
- Monitor, understand and predict key aspects of the ocean environment
- Identify ocean issues of major consequence

National Acts:

Marine Mammal Protection and Endangered Species Acts:

- Provide acoustic information on presence, distribution of at risk cetaceans
- Our data used by NOAA/Navy to assess impacts on marine animals

Marine Sanctuary and Federal Power Acts:

- NOAA's responsibility to assess man-made noise impacts on marine sanctuaries
- Mitigate noise impacts from oil exploration and renewable energy development

Quality

Leading NOAA program for acoustics technology development, data archiving, and analysis

Unique Acoustic Program Assets

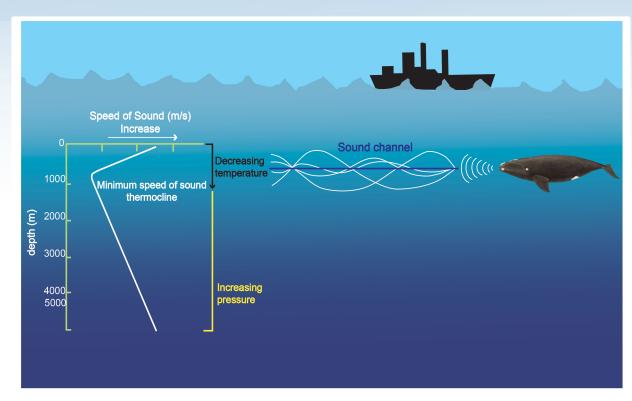
- 23-year archive of N. Pacific ocean sound (using U.S. Navy SOSUS hydrophone arrays)
- Global sound dataset (31 TB) from stationary and mobile hydrophone deployments
- <u>Ishmael</u> & <u>Seas:</u> In-house bio- and geo-acoustic analysis software (online free-ware)

Technology Transfer to Operations

- Passive acoustic recording module (WISPR Board), commercialized by EOS LLC
- Acoustic profiling float (QUEphone) available through Teledyne Webb, Inc.

Involvement in NOAA-wide Policy Initiatives

- Ocean Noise Strategy assess affects of man-made noise on marine animals
- Team to evaluate NOAA echo-sounder impacts on marine mammals

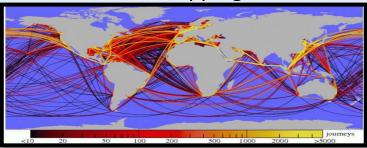


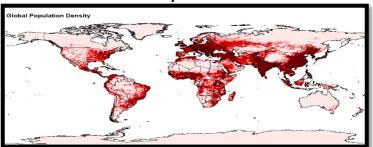
Background

Why is passive acoustics ideal for ocean monitoring?

Physics of ocean sound propagation:

- Sound travels faster in water (1500 m/s) than in air (340 m/s)
- Existence of sound channel, low velocity zone (~ 1 km deep)
- Sound waves travel long distances with little energy loss
- Higher marine organisms are acoustically oriented




Background: Ambient Ocean Sound

- Noise 3-4 times (12 dB) higher now in some regions than in 1960s
- Many marine animals use sound to communicate, navigate, find food

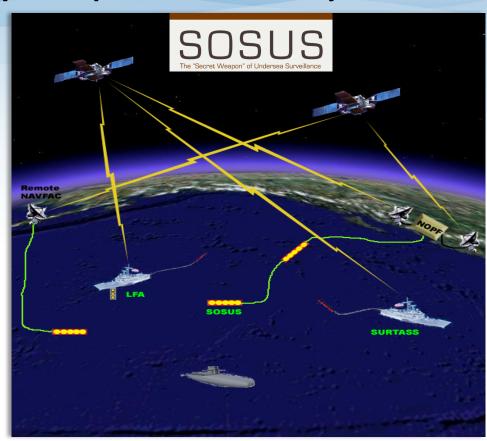
Global Shipping

Coastal Populations

Global Oil and Gas Reserves

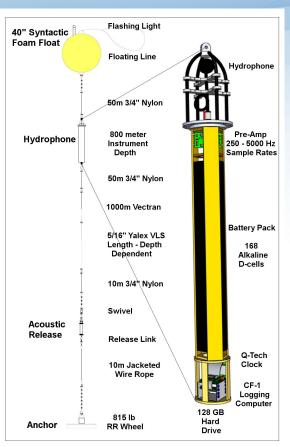
Offshore Oil Rigs

U.S. Navy Hydrophone Arrays


PMEL-Navy partnership to collect realtime hydrophone data in N. Pacific

<u>SOSUS</u>: a cold-war era cabled hydrophone network for anti-submarine warfare

PMEL first accessed SOSUS in 1991, one of longest civilian archive of ocean sound

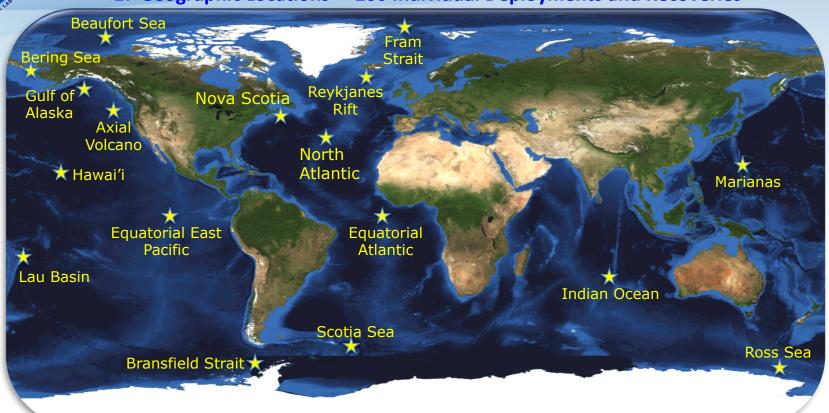

PMEL used the SOSUS sound archive to:

- Detect numerous submarine volcanic eruptions
- Track endangered blue and fin whales
- Evaluate long-term trends in ocean noise

Performance: PMEL Hydrophone Mooring

Following the success of SOSUS:

PMEL developed portable deep-ocean hydrophones


Current capacity:

- 5 kHz sample rate
- Up to 2-3 year recording capability

Autonomous Hydrophones: Global Reach

17 Geographic Locations ~200 Individual Deployments and Recoveries

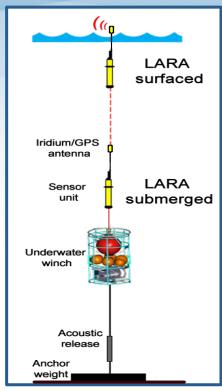
PMEL

ENVIRONMENTA

Mobile platforms and near-real-time communication

Slocum Glider

Seaglider


QUEphone Quasi-Eulerian Float

Roboat
Austrian Society for Innovative Computer Sciences

EMILY – Unmanned Surface Vehicle NOAA – Weather Service

Winch Mooring: under-ice recording

Performance

Acoustic Assessment of Marine Mammals

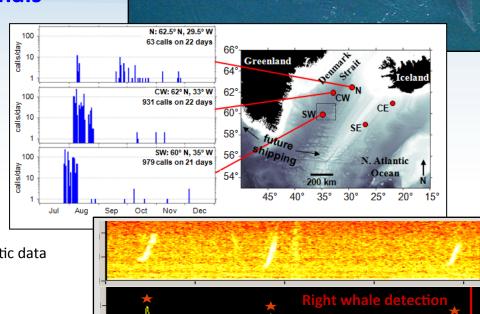
Why?

Basic research

- migration patterns
- feeding habitats
- trophic interactions

Find endangered species

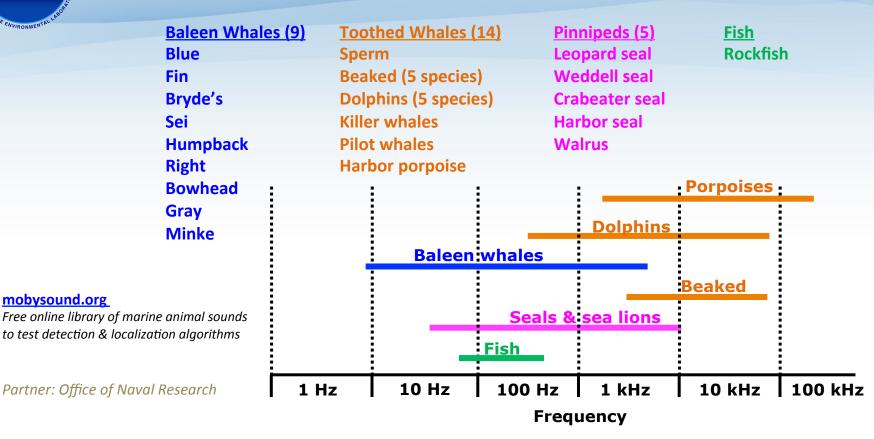
- e.g., only ~500 right whales left in North Atlantic
- even fewer in N. Pacific
- finding seasonal distributions is critical


How?

Develop quality detection algorithms to find whale calls in acoustic data

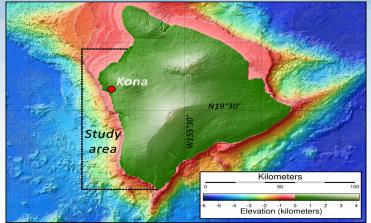
- efficient
- robust to noise

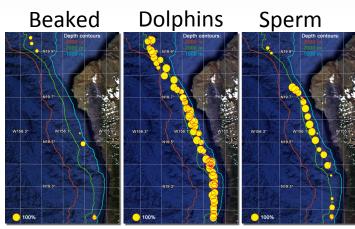
For....


Detecting baleen whale calls and toothed whale/dolphin clicks

mobysound.org

Acoustic Identification of Marine Animal Species




New Cetacean Tracking Techniques

Monitoring whales with ocean gliders

- Many cetacean species are thought to be sensitive to Navy sonar
- Deployed gliders in Navy test area off Hawai'i
- Detected Beaked whales, Dolphins, and Sperm whale calls
- All detections were reported to shore stations

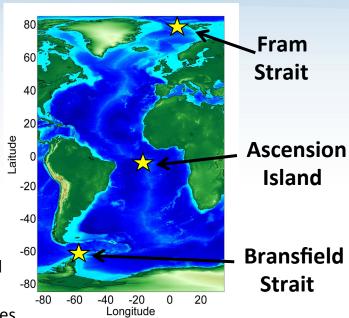
Performance

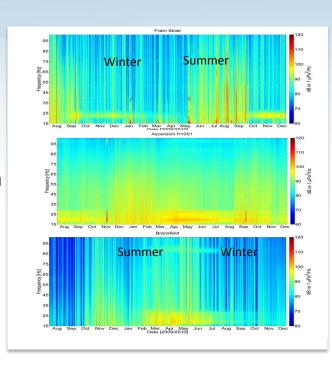
Ambient Sound: OAR-NMFS Ocean Noise Reference Stations

- Establish a network of ten noise reference stations across the U.S. EEZ
 (3 Sanctuaries, 2 National Parks)
- Cooperative program between PMEL,
 Sanctuaries, all six NOAA Fisheries Science
 Centers, and Park Service
- Goal: Create first comprehensive network to study long-term noise in US waters
- Future: Expand coverage globally

Ocean Scale Sound Comparisons: The Atlantic

Overall Sound Levels:

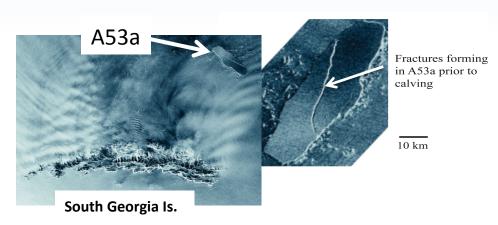

- Highest at Equator.
- Arctic higher than Antarctic
- Poles lowest in Winter due to sea-ice cover


Man-Made Noise:

- Airguns year-round at Equator
- Summer only in Arctic
- Very little in Antarctic

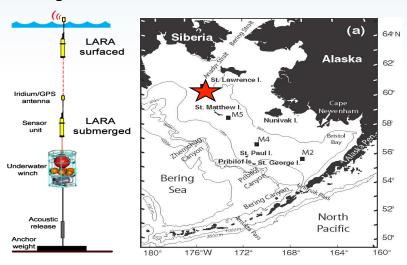
Marine Mammals:

- Blue-fin whales dominant sound in 15-30 Hz band (all locations)
- Leopard seals add 15 dB (~5 times ambient) over 300-350 Hz


2014 PMEL Lab Review

Polar Research

Sea-ice breakup contributes significantly to ambient noise

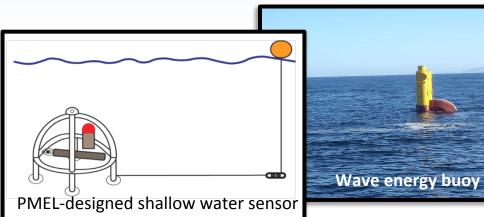

Antarctica

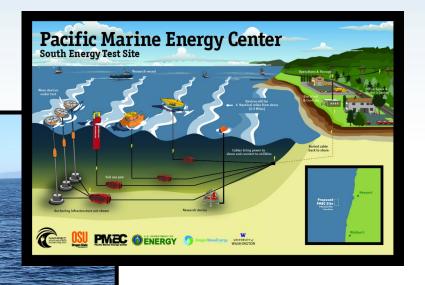
- · Recorded sounds of iceberg breakup off Antarctica
- One fracturing event equal to the noise of several hundred super-tankers
- Ice sounds detected as far north as equator

Arctic

- · Deploy winch mooring for under sea-ice recording
- Quantify variation in sound levels due to seasonal changes in sea-ice cover

16

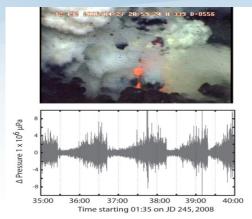

Partners: Korean Polar Inst. Partners: ONR, PMEL Eco-Foci



Supporting Renewable Energy:

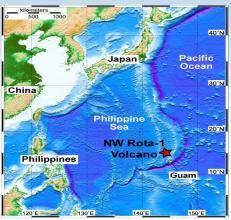
PMEL/DOE/OSU partnership to study ambient sound at the wave-energy buoy test site

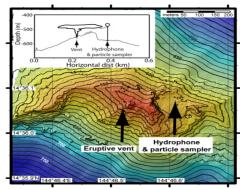
- Investigate noise produced by wave energy devices
- Understand impacts to marine mammals and fish
- Ambient noise dominated by surf, blue whales, ships



Geophysics:

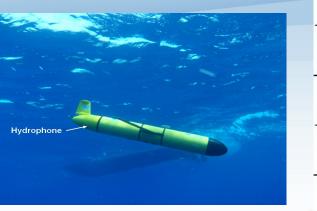
Eruption Processes and Gas Flux from Submarine Volcanoes

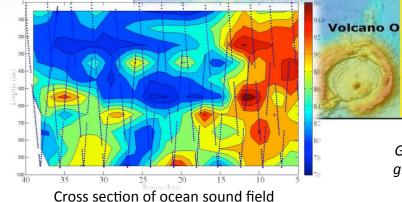

NW Rota-1 in the Mariana Isles


- First multi-year sound record of explosive deep-ocean eruption (512 m)
- Used sound to estimate flux of magmatic CO₂ gas into ocean
- Based on infrasound methods

Results

- CO_2 flux $\approx 0.4 \pm 0.1$ Tg per year
- This estimate is ~ 1% of global CO₂ flux from subaerial arc volcanoes


Partners:
NSF-Ocean Science Program, US Coast Guard, PMEL-EOI


Using a Glider to Detect an Erupting Volcano

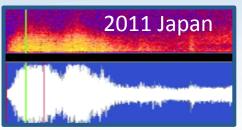
 First use of a glider to detect erupting volcano

- Mata volcano is dominant source of sound in the region (add 15 dB)
- Gliders effective means to map regional sound field

Glider purchased with a grant from OAR AA Fund

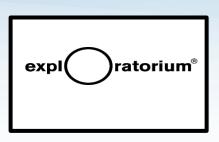
Partners: NSF – Ocean Sciences PMEL- ED&D

WM S


Samoa

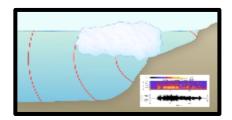
Education and Outreach

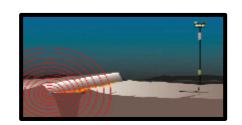
Mission:


Provide accurate information about the science we conduct to educate the public and inform society

NOAA Ossay Taday Kisal

Right whales




NOAA youtube: 600K views in 1 month

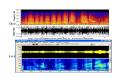
NOAA Ocean Today Kiosk video At 40 sites worldwide

SeaGrant Saturday Academy: Build a hydrophone

Scientist-in-Residence Exploratorium - SFO

Sounds, videos and animations available at our poster and www.pmel.noaa.gov/acoustics

Future Directions


- Complete deployment of Noise Reference Station network, continue development of a NOAA-wide Ocean Noise Policy
- Expand hydrophone deployments for global coverage of ambient sound levels (e.g. Challenger Deep, Arctic and Antarctic)
- Continue analysis of SOSUS archive to evaluate 20+ year trends in ocean noise and cetacean populations
- Deploy winch mooring for baseline sound levels in the Arctic as ice-cap recedes (expand to deeper parts of Arctic Ocean)
- Continue development of near real-time, mobile hydrophone platforms

Thank You!